500彩票

当前位置: 500彩票 > 500彩票 > 学术活动 > 正文

On the multiplicity of the eigenvalues of discrete tori

发布日期:2024-06-04点击数:

报告人:赵永强(西湖大学)

时间:2024年06月20日 10:00-

地址:理科楼LA103


摘要:It is well known that the standard flat torus T^2=R^2/Z^2 has arbitrarily large Laplacian-eigenvalue multiplicities. Consider the discrete torus C_N * C_N with the discrete Laplacian operator; we prove, however, that the eigenvalue multiplicities are uniformly bounded for any N, except for the eigenvalue one when N is even. In fact, similar phenomena also hold for higher-dimensional discrete tori and abelian Cayley graphs. In this talk, we will outline a proof of the uniformly bounded multiplicity result.

        This is a joint work with Bing Xie and Yigeng Zhao.


简介:赵永强, 博士毕业于美国威斯康星大学麦迪逊分校数学系, 现为西湖大学理500彩票特聘研究员。主要研究方向为数论及其相关领域。


邀请人:傅士硕


欢迎广大师生积极参与!



关于我们
500彩票 的前身是始建于1929年的500彩票 理500彩票和1937年建立的500彩票 商500彩票,理500彩票是500彩票 最早设立的三个500彩票之一,首任院长为数学家何鲁先生。